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is accompanied by a high number of erroneous SNP calls 
which are not easily diagnosed or corrected. In this study, 
we use a 384-plex GBS protocol to add 30,984 markers 
to an indica (IR64) ×  japonica (Azucena) mapping pop-
ulation consisting of 176 recombinant inbred lines of rice 
(Oryza sativa) and we release our imputation and error cor-
rection pipeline to address initial GBS data sparsity and 
error, and streamline the process of adding SNPs to RIL 
populations. Using the final imputed and corrected dataset 
of 30,984 markers, we were able to map recombination hot 
and cold spots and regions of segregation distortion across 
the genome with a high degree of accuracy, thus identify-
ing regions of the genome containing putative sterility loci. 
We mapped QTL for leaf width and aluminum tolerance, 
and were able to identify additional QTL for both pheno-
types when using the full set of 30,984 SNPs that were not 
identified using a subset of only 1,464 SNPs, including a 
previously unreported QTL for aluminum tolerance located 
directly within a recombination hotspot on chromosome 
1. These results suggest that adding a high density of SNP 
markers to a mapping or breeding population through GBS 
has a great value for numerous applications in rice breeding 
and genetics research.

Introduction

Plant breeding and genetics research is transitioning from 
a data-poor to a data-rich environment. Next-generation 
sequencing of crop plant genomes, including that of rice 
(Oryza sativa), is revolutionizing the field as newly abun-
dant data enable and facilitate the discovery and use of mil-
lions of single nucleotide polymorphisms (SNPs) in diverse 
genomes (Huang et  al. 2012; Xu et  al. 2012). Yet, at the 
same time, traditional bi-parental mapping populations 

Abstract  Genotyping by sequencing (GBS) is the latest 
application of next-generation sequencing protocols for the 
purposes of discovering and genotyping SNPs in a variety 
of crop species and populations. Unlike other high-density 
genotyping technologies which have mainly been applied 
to general interest “reference” genomes, the low cost of 
GBS makes it an attractive means of saturating mapping 
and breeding populations with a high density of SNP mark-
ers. One barrier to the widespread use of GBS has been the 
difficulty of the bioinformatics analysis as the approach 

Communicated by R. Snowdon.

Electronic supplementary material  The online version of this 
article (doi:10.1007/s00122-013-2166-x) contains supplementary 
material, which is available to authorized users.

J. Spindel · M. Wright · C. Chen · J. Cobb · J. Gage · 
S. Harrington · S. McCouch (*) 
Department of Plant Breeding and Genetics, Cornell University, 
162 Emerson Hall, Ithaca, NY 14853‑1901, USA
e-mail: srm4@cornell.edu

J. Spindel 
e-mail: jes462@cornell.edu

M. Wright 
e-mail: mhw6@cornell.edu

M. Lorieux 
UMR DIADE, Institut de Recherche pour le Développement 
(IRD), 34394 Montpellier Cedex 5, France

M. Lorieux 
Rice Genetics and Genomics Laboratory, International Center  
for Tropical Agriculture (CIAT), AA6713 Cali, Colombia

N. Ahmadi 
Centre de Coopération Internationale en Recherche Agronomique 
pour le Développement (CIRAD), TA06/01 Avenue Agropolis, 
34398 Montpellier Cedex 05, France

http://dx.doi.org/10.1007/s00122-013-2166-x


2700	 Theor Appl Genet (2013) 126:2699–2716

1 3

continue to play an important role in gene discovery, and 
both bi-parental and multi-parental breeding popula-
tions remain the foundation of many plant breeding pro-
grams (Almeida et al. 2013; Famoso et al. 2011; Rosyara 
et  al. 2009). While new “reference genomes” are being 
sequenced every day, many plant breeders and geneti-
cists using traditional mapping and breeding populations 
continue to work with sparse molecular marker data, or 
in cases of extremely resource-limited programs (such as 
those often found in developing countries) no marker data 
at all, despite the abundance of public data on select lines 
(Rosyara et  al. 2009). A recent development in genotyp-
ing technology is genotyping by sequencing (GBS), i.e., 
the adaptation of next-gen sequencing protocols to simul-
taneously discover and score segregating markers in pop-
ulations of interest. GBS holds the potential to close the 
genotyping gap between references of broad interest and 
mapping/breeding populations of local or specific inter-
est. The multiplexing of samples in GBS protocols keeps 
molecular biology costs low while the resultant next-gener-
ation sequencing data has immediate applications to many 
different research areas, ranging from gene discovery to 
genomic-assisted breeding (Thomson et al. 2012).

Many GBS-like protocols have been used in recent 
years, providing a range of methodological options for add-
ing large numbers of markers to new or existing mapping 
or breeding populations. All methods seek solutions to the 
same essential problem—how to efficiently sort through 
millions of short read sequences to identify molecular poly-
morphisms that segregate among individuals, varieties, or 
populations, while at the same time, identifying and dis-
carding sequencing and alignment errors, repetitive, and 
non-informative segments of the genome, and multiplex-
ing DNA samples to optimize throughput and minimize 
cost (Baird et  al. 2008; Davey et  al. 2011; Elshire et  al. 
2011a, b; Huang et  al. 2009). One current and popular 
strategy to achieve these goals is to develop a bar-coded 
library for each sample by digesting genomic DNA with a 
restriction enzyme and attaching molecular bar codes and 
primer annealing sites to the ends of each fragment prior to 
sequencing. Sequencing is then performed using a next-gen 
platform (i.e., Illumina HiSeq 2000) that generates short 
reads (<100  bp long), such that the sequenced library is 
enriched for regions of the genome located within 100 bp 
of the selected restriction sites.

Methylation-sensitive restriction enzymes are often 
employed to help reduce the complexity of the genome and 
specifically to avoid sequencing through repetitive (meth-
ylated) DNA. This strategy is particularly important for 
large genome plant species such as maize and wheat where 
the objective is to bias the sequencing towards unmethyl-
ated, single copy regions of the genome. In small genome 
species such as rice, peach, or Arabidopsis, complexity 

reduction is neither necessary nor particularly desirable; so 
in these cases, the restriction enzyme digestion serves pri-
marily to provide sites for barcode attachment and primer 
annealing. Regardless of the need to reduce complexity in a 
given genome, the desire to maximize efficiency and reduce 
cost has led to the widespread use of GBS protocols that 
use multiplexing based on barcoding at restriction enzyme 
sites. Restriction Site Associated DNA (RAD) tags, Diver-
sity Arrays Technology (DArT), reduced-representation 
sequencing, and low-coverage genotyping all implement 
restriction enzyme digestion for the dual goals of complex-
ity reduction and creating barcode/primer attachment sites 
(Baird et al. 2008; Davey et al. 2011; Wenzl et al. 2004).

To evaluate the capacity of GBS to bridge the geno-
typing gap for rice mapping and breeding populations, 
we applied the low-coverage (384-plex) GBS protocol 
described by Elshire et  al. (2011a, b) to a population of 
recombinant inbred lines (RILs) resulting from the cross of 
IR64 (indica) × Azucena (tropical japonica). This popula-
tion represents an ideal test case for using GBS to add high-
density SNP markers to a mapping population due to the 
wide variety of segregating traits present in the RIL prog-
eny as a result of genetic divergence between the indica 
and tropical japonica parents, as well as the immortality of 
the RIL lines. The population consists of 176 F10-F12 lines 
developed by single seed descent and like many classic 
mapping populations, has been previously genotyped with 
only sparse SSR markers, 200 in the case of this popula-
tion (This et al. 2010). The population, or a doubled hap-
loid population derived from the same parents, has already 
been used to dissect the genetic basis of several complex 
traits, including aluminum tolerance, root architecture, leaf 
width, plant ion concentration, and many other morpho-
logical and agronomic characteristics (Clark et  al. 2011; 
This et  al. 2010; Famoso et  al. 2011; Hemamalini et  al. 
2000; Hittalmani et  al. 2003; Li et  al. 2003; Prasad et  al. 
2000; Sallaud et al. 2003; Stangoulis et al. 2007). It is our 
hypothesis that by saturating the RIL population with dense 
SNP markers, we will be able to further capture additional 
QTL for agronomic traits of interest and better resolve the 
genetic architecture of the population, including regions 
of segregation distortion and recombination hot and cold 
spots.

The necessarily intense bioinformatics effort required 
to analyze sparse GBS data resulting from low-coverage 
protocols is an obstacle for many poorly resourced pro-
grams. We therefore developed a pipeline to streamline 
the process of adding SNPs to RIL populations such as 
the IR64  ×  Azucena population tested here. This pipe-
line includes alignment of rice GBS data to the reference 
genome, SNP calling and imputation, and identification 
and elimination of error, typically 1 % of SNP calls post-
imputation, or approximately 50,000 errors in our dataset. 
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We report our results aligning our GBS data to the rice 
reference genome using three different algorithms: BWA, 
Bowtie2, and PANATI. These are just three of many pos-
sible sequence aligners. BWA and Bowtie2 are perhaps 
the two most widespread alignment methods, and both are 
widely used for aligning plant sequencing data to a refer-
ence genome, however both were developed for analyzing 
the human genome, and are thus optimized for aligning 
low-diversity genomes. PANATI is an alignment and SNP 
discovery/genotyping algorithm originally developed by 
Wright (2011–2013) for high-diversity populations such 
as rice and/or populations that have no proper reference 
genome but can be analyzed against the reference assem-
bly of a closely related species. Such populations may be 
significantly diverged from this proxy reference sequence, 
even if diversity within the population is low. Ilut et  al. 
(2012) demonstrated PANATI’s utility in this case by align-
ing RNA-seq reads from different Glycine diploid and 
allotetraploid species against the reference sequence for 
Glycine max (cultivated soybean), finding that in simula-
tions, PANATI could align RNA-seq reads to the correct 
homeolog of the polyploid reference sequence 98.6  % of 
the time when 5 % divergence from the reference for the 
simulated reads was assumed.

Using the pipeline developed here in conjunction with a 
384-plex low-coverage GBS protocol (Elshire et al. 2011a, b)  
we successfully mapped more than 30,000 high-quality 
SNP markers onto the IR64  × Azucena RIL population. 
Indeed, it is hoped that the efficiency, low cost, and availa-
bility of a high-quality analysis pipeline, as outlined in this 
paper, will make GBS accessible and useful to a greater 
number of breeders and geneticists. With the availabil-
ity of next-gen sequencing, low marker coverage should 
no longer limit the resolution of genetics experiments or 
genomic-assisted breeding efforts.

Materials and methods

The population

A population of 176 F10-F12 RILs was developed by single 
seed descent (SSD) from a cross between IR64 × Azucena 
under greenhouse conditions at IRD, Montpellier, France. 
During the first 7 SSD generations, selfing was controlled 
by bagging the panicles. IR64 and Azucena belong to the 
two most distant varietal groups found within O. sativa—
indica and japonica, respectively—and have very con-
trasting morpho-physiological and adaptive characteris-
tics. IR64 is an improved semi-dwarf variety bred by the 
International Rice Research Institute (IRRI) in the 1960s 
for favorable irrigated ecosystems, while Azucena is a 
traditional, tall, aromatic landrace from the Philippines 

cultivated in upland ecosystems. Mapped with some 200 
SSR markers prior to this publication (This et al. 2010), the 
IR64 × Azucena RILs population represents an important 
immortal mapping resource for rice.

Plant material

Young leaf tissue was collected from each of the 176 
IR64 × Azucnea RILs and the two parents (IR64 and Azu-
cena) and DNA was extracted using the Qiagen 96-plex 
DNeasy kit as per the Qiagen fresh leaf tissue 96-plex pro-
tocol (http://www.qiagen.com/HB/DNeasy96Plant).

Library preparation

384-plex libraries were prepared as described in the pro-
tocol by Elshire et  al. (2011a, b). ApeKI was selected for 
use with the protocol due to its methylation sensitivity and 
uniform distribution of cut sites across the rice genome 
(Online resource 1). 12  μl of 384-plex adapters were 
obtained from the Cornell Institute for Genomic Diversity 
(sequences available at http://www.maizegenetics.edu) and 
were used for the ligation reaction along with 100  ng of 
high-quality DNA. Post-ligation reactions, 5 μl of each of 
the 384 reactions were pooled in a total of 10 mL Qiagen 
PCR clean-up kit binding buffer. The pooled solution was 
then divided evenly among, and bound to, four Qiagen spin 
columns. PCR cleanup then proceeded as per the Qiagen 
PCR clean-up protocol for each of the four columns, pro-
ducing four tubes of “pre-PCR” GBS library. Library prep-
aration then proceeded as per the published 96-plex proto-
col (Elshire et al. 2011a, b). Eight replicates of IR64 and 10 
replicates of Azucena were included in the 384-plex library.

Upon initial analysis, it was clear that 16 reactions 
failed sequencing, likely as a result of low-quality DNA 
samples. New DNA was extracted from frozen tissue col-
lected from individuals 8, 16, 22, 33, 35, 72, 102, 107, 
130, 131, 140, 158, 164, 165, 188, 270 using the Qiagen 
DNeasy kit. The new samples were then analyzed using 
the 96-plex GBS protocol with 12 μl 96-plex adapters and 
100 ng DNA. Another four replicates of each parent were 
included on the 96-plex library. The rest of the 96-plex 
library was filled with samples from another project—the 
data from these samples were separated and removed from 
the IR64 × Azucena data via de-multiplexing prior to data 
analysis.

This combined approach produced an average of 
6,788,434.00 reads for the two parents, and an average 
of 607,918.44 reads for the 176 RILs. The average num-
ber of reads per individual sequenced at 384-plex cover-
age was 452,427.13, while the average number of reads 
per individual sequenced at 96-plex was 967,296.10, for 
an average of 5,429,125.51 and 11,607,553.20 base pairs 

http://www.qiagen.com/HB/DNeasy96Plant
http://www.maizegenetics.edu
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sequenced/individual at the two different multiplexing lev-
els, respectively.

Data analysis

A custom-designed pipeline combining a novel alignment 
algorithm and SNP caller (PANATI), imputation script 
(GBS-PLAID), and error correction and quality control 
(PLUMAGE) was developed for streamlined data analysis 
(Fig. 1).

Short read alignment and SNP calling

Three different alignment and SNP calling methods were 
used to produce three pre-imputation GBS datasets: (1) 

BWA sequence alignment in conjunction with the TASSEL 
GBS SNP discovery pipeline, available publicly at maize-
genetics.net (BWA-TASSEL) (Bradbury et  al. 2007), (2) 
Bowtie2 sequence alignment in conjunction with the TAS-
SEL GBS pipeline (Bowtie2-TASSEL), and (3) PANATI, 
our in-house combination sequence aligner and SNP caller 
(available on request). For all three datasets, data from both 
the 384-plex and 96-plex libraries were analyzed together 
as one joint library, providing GBS data for all 176 RILs 
plus two parents.

BWA‑TASSEL

For the BWA-TASSEL dataset, a single key file contain-
ing all IR64 × Azucena individuals and parent replicates 

Fig. 1   Flowchart outlining our final, custom rice GBS pipeline. 
First raw GBS data is aligned to the rice reference genome and 
SNPs called using our custom aligner/SNP caller PANATI. Missing 
data is then imputed using Plaid-impute. PLUMAGE, a collection 
of custom python scripts, is then used to remove unimputable and 
low-accuracy imputable SNPs from the dataset. A sequencing error 

correction is then implemented to change likely sequencing errors to 
“NA”, and any markers with 25 % or more missing data are removed. 
If desirable, a subset of this dataset can be selected for QTL mapping. 
Regardless, a genetic map is constructed as a means of quality control 
using the R/qtl package kosambi mapping function
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from both the 384 and 96-plex libraries was used with the 
TASSEL GBS pipeline to identify good quality, unique, 
sequence reads with barcodes (termed “tags” by the pipe-
line developers). These sequence tags were aligned to the 
MSU v 6.0 Nipponbare rice reference genome using the 
Burrows-Wheeler Aligner (BWA)(Li and Durbin 2010), 
the SNPs were then called using the TASSEL quantita-
tive SNP caller. Identical SNPs and parent replicates were 
merged using the MergeDuplicateSNPs and MergeIden-
ticalTaxa plugins. SNPs monomorphic to the two parents 
were removed as part of the following imputation step. 
Online resource 2 contains the exact commands and param-
eters used to generate the dataset. Details and directions 
for implementing the TASSEL GBS pipeline including 
details of key file creation are available online in the TAS-
SEL 3.0 genotyping by sequencing pipeline documentation 
at http://www.maizegenetics.net. Details and directions 
for implementing BWA alignment are available online at 
the BWA sourceforge page (http://bio-bwa.sourceforge.
net/bwa.shtml).

Bowtie2‑TASSEL

The Bowtie2-TASSEL dataset was obtained exactly as 
the BWA-TASSEL dataset, however instead of aligning 
sequence tags to the rice reference genome using BWA, 
tags were aligned using Bowtie2 v2.0.0-beta7 (Langmead 
and Salzberg 2012). Online resource 3 contains the exact 
commands and parameters used to generate the dataset. 
Details and directions for implementing Bowtie2 can be 
found online at the Bowtie sourceforge page (http://bowtie-
bio.sourceforge.net/index.shtml).

PANATI

PANATI is an independent map-to-reference alignment/
mapping tool for short read sequences with integrated 
population sample SNP and small in/del (<20 bp) discov-
ery and simultaneous genotyping. PANATI was originally 
designed with specific attention to the characteristics of 
O. sativa populations and the related wild species Oryza 
rufipogon for the analysis of population samples with 
genome-wide high coverage (10X or greater) and is known 
to be accurate and sensitive in these settings. For use with 
GBS data, PANATI was modified and extended to include 
sample extraction from bar-coded multiplexed FASTQ 
files using key files similar or identical to those used by the 
TASSEL-based pipelines above (see TASSEL documenta-
tion for details on key file creation), reference index con-
struction restricted to GBS enzyme recognition site(s), and 
improved performance for low-coverage samples.

The SNP discovery and simultaneous genotyping step in 
the PANATI pipeline works the same as for deep coverage 

population samples with unrelated individuals, but specific 
options can be set to take advantage of the fact that the sam-
ple collection here is a RIL mapping population with the 
parents sampled to higher coverage than progeny. Namely, 
the PANATI “combine-samples” program that performs 
this step can be instructed to treat all progeny samples as 
outgroup samples, so that only polymorphisms between the 
two parent samples are discovered but the discovered poly-
morphisms are genotyped at all samples. Combine-samples 
can be further instructed to only output polymorphisms that 
segregate between the parent samples and therefore only 
those polymorphisms for which both parent samples have a 
confident genotype call.

Alternatively, the opposite approach can be used where 
information is pooled across progeny to discover polymor-
phisms at a high stringency even though the low coverage 
in any individual sample might prevent a high-confidence 
polymorphism call on the basis of the individual samples 
alone. Using combine-samples in this mode is appropri-
ate if parent samples were not sequenced or not sequenced 
deeply enough. PANATI combine-samples output geno-
types in standard VCF format with phred-scale polymor-
phism call confidence scores and individual genotype call 
confidence scores. Unlike the outputs of the other two pipe-
lines, polymorphisms and genotypes can be filtered on the 
basis of these confidence scores.

PANATI v3.10 source code as well as a UNIX makefile 
for automating PANATI execution on this dataset is avail-
able on request. Default PANATI v3.10 options were used 
except for specifying the ApeKI recognition site for index 
generation.

Imputation (GBS‑PLAID)

Following short read alignment and SNP calling using one 
of the three methods described above, missing genotype 
calls as a result of too few or no reads observed at a locus 
were imputed using a program (“GBS-PLAID”) developed 
for this work and designed for GBS on bi-parental mapping 
or breeding populations. The method employed works by 
resolving phase of two-locus haplotypes using a Bayesian 
framework where the prior reflects the relative expectation 
of coupling versus repulsion haplotypes and any preference 
for either parent’s haplotype given the breeding scheme of 
the population. Posterior haplotype probabilities are then 
computed using the observed data from all samples where 
both loci have a genotype call. For samples which are miss-
ing data at the locus to be imputed but have a genotype call 
at the reference locus, posterior probabilities of the diploid 
genotype at the missing locus are computed based on the 
probability of the necessary two-locus haplotypes for each 
possible genotype combined with a prior for the geno-
type reflecting any expected bias for a parental allele and 

http://www.maizegenetics.net
http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
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bias for or against heterozygote genotypes. In the case of 
RIL populations with homozygous parents, the genotype 
prior reflects equal expectation for either parent allele as a 
homozygote and bias against observation of a heterozygote 
genotype.

This simple framework is then naturally extended such 
that adjacent markers both 5′ and 3′ of the imputed locus 
are used as reference loci. The number of markers on either 
side can be selected by the user. A larger number of mark-
ers results in a larger fraction of missing data having an 
imputed genotype but at the expense of potentially lower 
confidence in these genotypes as more distal markers have 
a higher fraction of recombinants. For mapping populations 
with known parental genotypes, linkage is extensive and in 
rice the density of GBS markers is high; most genotypes 
can be imputed confidently.

As a measure of imputation accuracy, GBS-PLAID also 
calculates imputed genotypes and their posterior prob-
abilities for genotypes that are already observed in the 
output of any of the three pipelines to which GBS-PLAID 
is applied. The accuracy of imputation is estimated as the 
fraction of observed genotypes that match the imputed 
genotypes that met the minimum confidence threshold. 
These values are calculated for each locus and can be used 
downstream to filter out markers with lower accuracy esti-
mates. GBS-PLAID reads VCF genotype data and cur-
rently outputs HapMap format with missing data replaced 
by imputed genotypes along with marker summary infor-
mation such as the number of missing genotypes remain-
ing and the accuracy estimate for the marker. To connect 
the TASSEL-based pipelines to GBS-PLAID, TASSEL’s 
HapMap format is converted to an interim VCF format 
without confidence scores (equivalents are not provided 
in TASSEL’s output) which is then used as input to GBS-
PLAID. Output of the input VCF except with missing 
genotypes filled by their imputed values along with con-
fidence scores corresponding to the posterior probability 
of the imputed genotype is planned for the next version of 
GBS-PLAID. This could be used to estimate a genotype 
confidence value for genotypes observed in TASSEL out-
puts simply by inserting the phred-scale confidence score 
corresponding to the posterior of the observed genotype as 
if it was imputed.

For this analysis, GBS-PLAID command line options 
were set such that at least 15 minor allele observations (-m 
15) and at least 60 samples with observed genotypes (-n 
60) were required to accept a marker on input for impu-
tation and use as a reference locus. Any marker not satis-
fying these constraints are dropped from the input and 
excluded from output. We used five flanking markers 
both 5′ and 3′ as reference markers for imputing geno-
types (-w 5). Other settings give similar imputation results. 
GBS-PLAID is available as part of our GBS data analysis 

pipeline as Online resource 7 (also available online at 
http://www.ricediveristy.org/data).

Post‑imputation error correction and filtering (PLUMAGE)

All post-imputation data filtering and error correction 
were performed using PLUMAGE, a streamlined pipeline 
consisting of custom Python scripts for GBS data analy-
sis, now publicly available as part of our GBS data analy-
sis pipeline as Online resource 7 (also available online at 
http://www.ricediversity.org/data) (Fig.  1). Our first step 
post-imputation was to remove all SNPs that were either 
unimputable or had imputation accuracy scores lower than 
95 % (see previous section on imputation for details on why 
SNPs can be unimputable or low accuracy). The next step 
was to implement a basic sequencing error correction. For 
every individual and for each chromosome, recombination 
breakpoints were tested for errors. If a breakpoint was fol-
lowed by at least four SNP calls on different tags without 
reverting to the previous parent allele, the breakpoint was 
considered true. Otherwise, the breakpoint call was consid-
ered an error, and changed to “NA”, to represent “missing 
data”. Following the sequencing error correction, markers 
with 25  % or more missing data were removed from the 
dataset. Individuals with >8 % missing data (user-defined 
threshold) can also be identified and removed at this junc-
ture in the pipeline via an optional flag, however this was 
not done for the dataset reported here for the sake of com-
pletion. The data prior to running them through the three 
steps described above are referred to as the “post-imputa-
tion, pre-error correction” data. The data after they are run 
through these three steps are referred to as the “post-impu-
tation, post-error correction” data (Fig. 1).

As a final, important quality control step, for all datasets 
generated including the pre-imputation, post-imputation, 
pre-error correction, and post-imputation, post-error cor-
rection, a genetic linkage map was calculated using the 
R/qtl Kosambi mapping function (R version 2.15.1, R/qtl 
package 1.24.9). Specifically, to calculate the genetic map, 
the complete dataset-of-interest (either pre-imputation, 
post-imputation, pre-error correction, or post-imputation, 
post-error correction) including linkage groups based on 
the physical map (i.e. chromosome numbers) was loaded 
into R/qtl in the: “csvr” format (A PLUMAGE script is 
available to convert the default hapmap-formatted data into 
the R/qtl “csvr” format). The data was then coded within 
R/qtl as an RIL population, after which, the genetic map 
for the population was calculated using the R/qtl est.map() 
function with the map.function parameter set to “kosa-
mbi”. The Kosambi mapping function calculates map dis-
tance (m) between two markers on the same chromosome 
as 1

4
ln

(

1+2c

1−2c

)

, where c is the observed recombination  
frequency between the two markers. The order of the markers  

http://www.ricediveristy.org/data
http://www.ricediversity.org/data
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along the chromosome was fixed using the SNP physical 
map positions. The Kosambi function was selected over 
other mapping functions because it allows for modest inter-
ference among double cross-over events and is therefore 
thought to be a more accurate representation of true map 
distances than, for example, the Haldane mapping function 
which does not account for interference (Walsh 1998) (see 
our publicly available R/qtl mapping code for exact com-
mands). The genetic maps were converted to visual repre-
sentations where vertical lines represent the chromosomes 
and short horizontal lines represent the markers using R/qtl. 
The spaces between the horizontal lines are proportional 
to the map distances between markers (Fig. 2). The num-
ber of breakpoints per RIL per chromosome was counted 
using a custom Python script. All counted breakpoints were 
then summed to obtain the total number of breakpoints for 
the population. Per chromosome averages were obtained 
for the final PANATI post-imputation, post-error correc-
tion dataset by averaging the number of breakpoints per 

chromosome for all lines in the population. Standard devia-
tions are reported for these averages (Table 2).

In some cases, users of GBS data may wish to choose 
subsets of a large dataset that are uniformly distributed 
across the genome. To facilitate these analyses, we devel-
oped an algorithm (included in PLUMAGE) for choosing 
subsets of SNPs evenly spaced across the genome. Inter-
val size between selected SNPs is determined via a bin 
parameter. First, the total SNP set is binned according to 
the desired spacing of SNPs, then the SNP with the deepest 
sequencing coverage is selected from each bin to form the 
subset. For this study, a QTL mapping subset was devel-
oped by selecting 1 SNP every 240  Kb (approximately 
1 cM) from the final post-imputation, post-error correction 
dataset (no genetic map is shown for this QTL mapping 
subset as a quality map is shown for the superset). Another 
PLUMAGE script allows the user to go back and select 
additional SNPs in specific regions of interest, if desired. 
This allows a user to increase SNP density in one or more 

Fig. 2   Pre-imputation, post-imputation-pre-error correction, and 
post-imputation-post-error correction genetic maps resulting from 
PANATI, BWA-TASSEL, and Bowtie2-TASSEL IR64  ×  Azucena 
GBS datasets. Note that the y-axis scales of the nine maps are not 
the same. As the amount of error decreases in the dataset (at each 
stage of pipeline) the degree of map distention also decreases. Only 
the PANATI post-imputation, post-error correction dataset, however, 
produces the “expected” genetic map for rice. Note also that expan-

sions such as those seen on chromosome 3 of the BWA-TASSEL or 
chromosome 1 of the Bowtie2-TASSEL post-imputation, post-error 
correction genetic maps cannot be fixed by removing markers in the 
expanded regions. This is because expansion is not the result of dou-
ble recombination between one or two pairs of markers but rather 
results from a series of errors that results in two essentially independ-
ent linkage groups on the same chromosome
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target regions to facilitate fine mapping and/or marker-
assisted selection.

Analysis of coverage, segregation distortion, recombination 
frequency, and call rate by dataset

Call rates were calculated per SNP as the percent of indi-
viduals that had a non-”missing data” call in any given 
dataset, and read number was calculated as the number of 
sequencing reads that covered a given SNP. Call rate dis-
tributions were calculated using the JMP® Pro 10.0.0 sta-
tistical program by SAS. SNPs were put into 1,550 250 Kb 
bins to assess the genome-wide coverage of each SNP set 
(86/1,550 bins were empty), and the number of SNPs in 
each bin was charted using JMP. The average number of 
sequence reads, calculated as the average of the number of 
reads covering the SNPs in a particular bin, was then over-
laid on the distribution of SNP counts as a line. Segrega-
tion ratios were calculated for every SNP in the final post-
imputation, post-error correction PANATI dataset, as well 
as for the 200 SSRs already placed on this IR64 × Azucena 
population, and the results plotted against physical position 
using JMP. The ratio of genetic:physical position of SNPs 
was obtained by dividing a SNP’s genetic position (cM) 
by its physical position (Mb). The results were plotted by 
physical position using JMP.

QTL mapping

Aluminum tolerance

The QTL mapping was performed using both the full, 
post-imputation, post-error correction PANATI marker 
set (30,984 markers) and the QTL mapping subset (1,464 
markers) on all 171 genotyped RILs. Previously published 
aluminum tolerance phenotype data (Famoso et  al. 2011) 
were used to validate the mapping of new marker sets and 
demonstrate the value to QTL mapping of saturating a 
mapping population with markers. For details on phenotype 
data collection, see Famoso et  al. (2011). QTL mapping 
was performed using the R/QTL package (R version 2.15.1, 
R/qtl package 1.24.9), and the same code was used for both 
the full 30,984-marker set and the 1,464-marker subset. The 
datasets were loaded into R/qtl and genetic maps calculated 
as described previously in the methods section on post-
imputation error correction and filtering. After calculating 
the genetic map, the genetic marker positions were “jitter-
mapped”, i.e. adjusted very slightly, to avoid identical posi-
tions for markers on different chromosomes, after which 
the underlying genotype probabilities were calculated using 
the R/qtl calc.genoprob() function and the Kosambi map-
ping function (see previous section for details on the Kosa-
mbi function). An initial single-marker QTL scan was then 

performed using the scanone() function with Haley-Knott 
Regression, under the assumption that the phenotype data 
were normally distributed. 1,000 permutations were used to 
determine the LOD threshold for significance. After scan-
ning for initial QTL, the QTL model was refined by scan-
ning for additional linked QTL, still using Haley-Knott 
Regression and assuming the phenotypes were normally 
distributed, but conditioning on the QTL already detected. 
The model was finalized by using stepwise forward selec-
tion and backward elimination to probe the model space for 
the best fit QTL model for the data. An ANOVA analysis 
was run on the final model to determine the percentage of 
variance explained by each QTL and the estimated effect 
sizes. The peak QTL positions are reported along with the 
right and left flanking markers, which correspond to the 
nearest flanking marker within 1.5 LOD units of the peak 
marker. Together, the interval constructed by the two flank-
ing markers roughly represents the 95 % confidence inter-
val for the QTL (Dupuis and Siegmund 1999; Mangin et al. 
1994). Given the high density of markers on the population, 
this procedure is equivalent to composite interval mapping 
methods (Darvasi et  al. 1993). The QTL mapping code 
used in this study is available publicly as Online resource 7 
and online at http://www.ricediversity.org/data and is gen-
eralized for convenience of use.

Leaf width

The same 30,984 and 1,464 marker datasets used to map 
QTL for Aluminum tolerance were used to map QTL for 
leaf width using data generated as part of this study. The 
RIL population was planted in Guterman Greenhouse 160 
at Cornell University in Ithaca, NY, in late September 2010 
and was phenotyped at maturity in January 2011. Three 
replicates of each RIL were planted in a randomized com-
plete block design. Three mature leaves from each replicate 
were measured at the widest point and leaf width per plant 
was calculated as the mean of the three measurements. The 
grand mean of the three replicates was calculated for each 
RIL and used for QTL mapping. The same QTL mapping 
procedure and code used to map the aluminum tolerance 
QTL (described above) was also used to map the leaf width 
QTL.

Results

The GBS sequencing reads were aligned to the rice  
reference genome using either BWA (Li and Durbin 2010),  
Bowtie2 (Langmead and Salzberg 2012), or PANATI 
(Ilut et  al. 2012) (see methods for details). SNPs 
aligned using BWA or Bowtie2 were called using the  
TASSEL GBS pipeline (http://www.maizegenetics.net/

http://www.ricediversity.org/data
http://www.maizegenetics.net/index.php?option=com_content&task=view&id=89&Itemid=119
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index.php?option=com_content&task=view&id=89&Ite
mid=119), while SNPs aligned with PANATI were called 
with PANATI, our in-house alignment and SNP calling 
algorithm. Any of the three methods produced initial pre-
imputation GBS datasets that contained between 56,400 
and 66,800 polymorphic SNPs, with the PANATI data-
set containing the most SNPs (Table  1). All initial data, 
however, were very sparse with median call rates of 47.4, 
48.0, and 33.5 percent for the BWA-TASSEL, Bowtie2-
TASSEL, and PANATI datasets, respectively (Table  1, 
Online resource 4). Furthermore, pre-imputation data were 
subject to high error, as evidenced by massive expansions 
in the genetic map (Table  1; Fig.  2). The pre-imputation 
BWA-TASSEL and Bowtie2-TASSEL datasets had total 
genetic map sizes of 184,275 and 197,458 cM, respectively, 
120–130 times the expected size of 1,520 cM for the rice 
genetic map (Harushima et  al. 1998). The PANATI SNP 
set produced a genetic map of 84,389 cM, or 55 times the 
expected size (Table 1).

To address both sparseness and error rate, all three data 
sets were imputed (see Methods for details) and all non-
imputable SNPs or SNPs with imputation accuracies lower 
than 95 % were discarded. As a result, in all post-imputa-
tion (but pre-error correction) SNP sets, median call rates 
were equal to 100 % (Table 1, Online resource 4). Removal 
of unimputable and low-imputation accuracy SNPs also 
decreased genetic map expansion, although all three maps 
remained elongated (Table  1; Fig.  2). The PANATI set 
produced a genetic map that was 8,129  cM long, while 
the BWA and Bowtie2 genetic maps were 12,032 and 
12,863 cM long, respectively (Table 1).

Remaining map distention was thought to result from a 
combination of sequencing errors and tag misalignments, 

so a simple sequence error correction algorithm was imple-
mented (see “Materials and methods”). While median call 
rates remained high for all three datasets post-error cor-
rection (between 98 and 99.5 %), only the final post-impu-
tation, post-error correction PANATI dataset produced a 
genetic map with zero distended chromosomes, a reason-
able genetic map length of 1,862 cM, and a total of 6,160 
breakpoints across all 171 RILs, or ~36.02 breakpoints per 
RIL (Fig. 2; Table 1, Online resource 4). Upon removal of 
three individuals with missing data greater than or equal 
to 8.0  % (individuals 153, 206, and 293), the number of 
breakpoints on the 168 RILs further drops to 5,348, for an 
average of 31.83 breakpoints per RIL. The average num-
ber of breakpoints per chromosome, along with the stand-
ard deviations from the mean is given for both the full 171 
RILS and the 168 RILs in Table  2. Removal of the three 
individuals with large degrees of missing data significantly 
lowered the standard deviations on all chromosomes, in 
addition to adjusting the mean values, but did not signifi-
cantly change the distribution of markers on the genetic 
map (data not shown).

By contrast to the PANATI dataset, in the BWA-TAS-
SEL dataset, chromosome three remained elongated, while 
in the Bowtie2-TASSEL dataset, chromosomes 1 and 12 
were slightly distended (Fig.  2), unless more stringent 
imputation parameters were used (data not shown). Break-
point counts were higher in both the BWA-TASSEL and 
Bowtie2-TASSEL datasets as well, with 7,310 and 7,620 
breakpoints on 171 RILs for the BWA-TASSEL and Bow-
tie2-TASSEL datasets, respectively (Table 1). It is impor-
tant to note that in both cases the map distensions did not 
result from one or two “bad” markers which could hypo-
thetically be removed from the datasets, but from distinct 

Table 1   Statistics for post-imputation, post-error correction, and post-imputation, pre-error correction, and pre-imputation datasets

Dataset Total markers Genetic map  
length (171 RILs)

Total number of  
breakpoints for 171 RILs

Median marker 
call rate

PANATI pre-imputation 66,780 84,388.95 76,167 33.53

PANATI post-imputation,  
pre-error correction

30,991 8,128.98 35,856 100

PANATI post-imputation,  
post-error correction

30,984 1,862.96 6,160 99.4

BWA pre-imputation 56,422 185,274.49 86,314 47.37

BWA post-imputation,  
pre-error correction

43,438 12,032.54 48,358 100

BWA post-imputation,  
post-error correction

43,280 2,546.42 7,310 98.86

Bowtie2 pre-imputation 60,245 197,457.92 91,733 47.98 %

Bowtie2 post-imputation,  
pre-error correction

46,111 12,863.11 50,254 100

Bowtie2 post-imputation,  
post-error correction

45,946 2,454.23 7,620 98.86

http://www.maizegenetics.net/index.php?option=com_content&task=view&id=89&Itemid=119
http://www.maizegenetics.net/index.php?option=com_content&task=view&id=89&Itemid=119
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sets of markers at both ends of the chromosome in question 
(e.g. 5 or 11) that were essentially unlinked. In other words, 
removing the markers that appear to lie between these 
groups does not change the picture of the map, suggesting 
that a high degree of stochastic error remains within the 
BWA-TASSEL and Bowtie2-TASSEL datasets; error that 
is detected when a genetic map is calculated.

The final post-imputation, post-error correction PANATI 
dataset thus contained 30,984 high-quality markers 
(Table  1) on 171 RILs. Publicly available dataset for 168 
RILs with individuals 153, 206, and 293 removed, is avail-
able online at http://www.ricediversity.org/data. SNPs were 
well distributed across the genome, with an average of 21.16 
SNPs per cM (240 Kb) (Wu et al. 2003). While SNPs were 
well distributed, they were not uniformly distributed. Some 
250 Kb regions contained as many as 77 SNPs, while a very 
few contained none. Figure  3 shows this distribution for 
chromosome 1, along with the average number of sequence 
reads covering the SNPs in each bin (see Online resource 
5 for all other chromosomes). In some cases, for example 
at 39  Mb on chromosome 1, a low number of SNPs/bin 
correlated with lower read coverage for the bin. However, 
in other cases, the opposite correlation was observed. For 
example, the bin beginning at 21.14  Mb on chromosome 
one contained only four SNPs, but those four SNPs were 
covered by an average of 539 sequence reads (Fig. 3). Over-
all, this suggests that micro regions of low-SNP detection 
were not necessarily the result of low-sequence coverage, 
but were due to the discarding of repetitive or methylated 
DNA, or resulted from low polymorphism between the par-
ents. An example supporting this explanation can be seen 
in the region between 9 and 13.5 Mb on chromosome 5, a 
known SNP desert (Wang et  al. 2009; Feltus et  al. 2004; 
Nasu et al. 2002) that is well covered by sequencing reads 
in this dataset, but contains few SNPs (Online resource 5).

Segregation distortion

Segregation distortion is to be expected in any 
indica × japonica rice intercross due to the sterility barriers 

that exist between the two varietal groups. Identifying these 
regions has always been of interest to geneticists and breed-
ers, however, with only 200 SSRs on a population such as 
the IR64 × Azucena RILs, it was not previously feasible 
to map more than the grossest trends in segregation distor-
tion (Fig. 4). The high resolution of our final GBS marker 
dataset, however, greatly enhanced our ability to define the 
regions showing segregation distortion across the genome 
in this population. By graphing the segregation ratio (num-
ber of IR64 calls/Azucena calls at a given locus), we are 
able to visualize solid curves that range above and below 
the neutral segregation ratio of 1:1 in this RIL population 
(indicated by the red line in Fig. 4). Valleys below the red 
line represent regions of the genome favoring Azucena 
alleles, while peaks above the red line represent regions 
favoring IR64 alleles.

Recombination frequency

Numerous groups have found recombination frequency to 
vary substantially across the rice genome (Chen et al. 2002; 
Wu et al. 2003; Zhao et al. 2002). The resolution of our new 
data also made it possible to map recombination hot and 
cold spots across the genome in this population. The ratio 
of a SNP’s genetic:physical position (cM/Mb) was plot-
ted versus the SNP’s physical (Mb) position (Fig. 5). One 
cM in rice is approximately equal to 0.24  Mb (Wu et  al. 
2003); therefore, the expected ratio between the two units 
is approximately 4, represented on the graphs in Fig. 4 as a 
horizontal red line. With only 200 SSRs, it was not possible 
to accurately map recombination hot and cold spots, just as 
it was not possible to adequately map segregation distor-
tion. However, by saturating the population with ~31,000 
SNPs, we were able to clearly identify both regions of 
heightened recombination (peaks above the red line) and 
regions of depressed recombination (valleys below the line) 
(Fig.  5). Centromeres and pericentromeric regions, delin-
eated on the graphs as vertical blue lines, correlated with 
regions of decreasing recombination frequency, although 
not necessarily with recombination cold spots, per se.

Table 2   Mean and standard deviation of the number of breakpoints per chromosome for the final PANATI post-imputation, post-error correction 
dataset calculated using either all 171 RILs (all RILs) or 168 RILs (168 RILs) after removal of three individuals with missing data ≥8.0 %

Chromosome 1 2 3 4 5 6 7 8 9 10 11 12 Grand

All RILs mean 
breakpoints/chrom

4.40 3.61 4.10 3.10 2.76 3.36 2.92 2.39 2.50 1.94 2.77 2.19 3.00

All RILs standard  
deviation

3.85 3.21 3.67 3.79 2.36 4.77 3.65 2.81 3.65 1.78 4.72 2.77 3.42

168 RILs mean 
#breakpoints/chrom

4.07 3.30 3.70 2.71 2.54 2.84 2.57 2.14 2.06 1.80 2.23 1.88 2.65

168 RILs standard  
deviation

2.42 1.79 1.89 1.69 1.55 1.88 1.47 1.40 1.58 1.42 1.60 1.30 1.67

http://www.ricediversity.org/data
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QTL mapping

To demonstrate the quality of our final post-imputation, 
post-error correction PANATI dataset and the value to QTL 
mapping of saturating a mapping population with SNPs 
over using more sparsely distributed markers, we used both 
the entire 30,984-SNP post-imputation, post-error correc-
tion set, as well as a 1,464-SNP subset, selected by choos-
ing the SNPs covered by the highest number of reads every 
240 Kb (cM), to re-map QTL for aluminum tolerance using 
publicly available phenotype data (Famoso et  al. 2011), 
and to identify QTL for leaf width using previously unpub-
lished phenotype data.

Aluminum tolerance

In Famoso et al. (2011), four QTL were identified as segre-
gating for aluminum tolerance in the IR64 × Azucena RIL 
population based on an underlying marker dataset consist-
ing of ~200 SSR markers. Using either the 1,464-SNP sub-
set or 30,984-SNP full set, we were able to identify three 
out of the four previously mapped QTL (Table  3, Online 
resource 6). The fourth QTL, at 27.61 Mb on chromosome 
2, which had the lowest LOD-score in the previously pub-
lished analysis, was registered as a peak in our analysis, but 
did not pass our significance threshold. LOD scores used to 
determine significance of QTL are calculated empirically 
and thus the larger number of markers and higher probabil-
ity of false positives (Type 1 error) in our dataset required 
an elevated LOD significance threshold. In addition to 
those QTL already identified by Famoso et  al. (2011), 
when using the saturated map of 30,984 SNP markers, we 
also identified two additional significant QTL on chromo-
some 1 at 11.01 and 11.43 Mb. With LOD scores of 6.86 
and 8.07, respectively, these data support the existence of a 
previously unidentified QTL in this region of chromosome 
1, a region which, according to Fig. 5, also corresponds to 
a recombination hot spot. Together, in a multi-QTL model, 

the four Al tol (LRG) QTL identified using the full marker 
set explained 48.68  % of the variance (Table  3), while 
the two Al tol (LRG) QTL identified using only the sub-
set of 1,464 markers explained only 27.96 % of the vari-
ance (Online resource 6). LOD scores associated with QTL 
identified using both the subset and full SNP set were very 
similar, although not identical (Online resource 6). Con-
fidence intervals of all identified QTL are reported as the 
nearest right and left flanking markers within 1.5 LOD 
units of the peak marker in Table 3 and Online resource 6.

Leaf width

The results of mapping QTL for leaf width were also 
dependent on which SNP dataset was used. Using either 
the 1,464 SNP subset or the 30,984 SNP full set, we were 
able to identify two significant QTL for leaf width in the 
IR64 × Azucena RILs. Both QTL were located on chromo-
some 1, one at either 2.20 or 4.69 Mb (for the subset or full 
SNP set, respectively), and one at approximately 34.23 Mb 
(Table 3, Online resource 6). Both QTL have been previ-
ously identified in other studies of rice leaf width, further 
confirming the quality of our new SNP marker dataset. The 
QTL on chromosome 1 at 4.69 Mb corresponds to Qflw1, 
identified by Mei et  al. (2003) in an (indica  ×  japonica 
RIL)  ×  indica F2 testcross population while the QTL 
at 34.2 Mb was identified by Yan et  al. (2003) in another 
indica  ×  japonica population (Gramene ID AQEJ025). 
In addition, using the full SNP set, we identified another 
four significant QTL: one on chromosome 1 at 41.34 Mb, 
one on chromosome 4 at 19.73  Mb, one on chromosome 
5 at 21.08  Mb, and one on chromosome 8 at 26.79  Mb 
(Table 3). These QTL have also been identified in previous 
studies. The additional QTL on chromosome 1 was identi-
fied in the study by Yan et al. (2003), while the remaining 
additional QTL on chromosomes 4, 5, and 8 were identified 
in a third indica ×  japonica RIL population also by Mei 
et al. (Mei et al. 2005), further suggesting the value to QTL 

Fig. 3   Count of SNPs (left y-axis, blue bars) by 250 Kb bin (bin start 
position in Mb on x-axis) on chromosome 1, with the average num-
ber of reads/SNP/bin (right y-axis) overlaid as a red line. The number 
of reads is defined here as the number of sequence reads covering a 

given SNP. The average number of reads per bin (plotted here) was 
calculated by taking the mean of the read counts for the SNPs in each 
bin. Vertical gray lines delineate the pericentromeric regions. For 
other chromosomes, see supplement (color figure online)
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mapping of saturating the mapping population with SNP 
markers.

In a multi-QTL model generated using the full marker 
dataset, these five QTL accounted for 53.1 % of the vari-
ation in mean leaf width (Table 3). By contrast, in a multi-
QTL model generated using the 1,464 SNP subset, the 
two LW QTL identified only accounted for 27.6 % of the 

variation. As was the case for aluminum tolerance, the 
positions and LOD scores of the QTL identified by both the 
full SNP set and the SNP subset were very similar (Online 
resource 6). Confidence intervals of all identified QTL 
are reported as the nearest right and left flanking markers 
within 1.5 LOD units of the peak marker in Table  3 and 
Online resource 6.

Fig. 4   Ratio of IR64 genotype (A) to Azucena genotype (B) by physi-
cal position (Kb) by chromosome for the 200 SSR markers originally 
mapped on this population (right) and the final PANATI post-error  
correction dataset. A red line is marked at the expected segregation  

ration of 1:1. Blue lines delineate the pericentromeric regions. In some 
cases the physical position of the SSR markers could not be determined. 
These SNPs were excluded from the analysis (color figure online)
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Discussion

Genotyping by sequencing (GBS) has generated high lev-
els of interest within the plant breeding and genetics com-
munity. The low up-front cost of approximately $9.00/
sample for 384-plex (Elshire et  al. 2011a, b) and simple 
and straightforward library preparation protocol promises 

the ability to put thousands of markers on any population 
of interest—breeding, mapping or otherwise, thus bridging 
the genotyping gap between reference and non-reference 
lines and removing low marker coverage as a barrier to any 
genetics experiment or marker-assisted breeding effort. Our 
results suggest that under the right circumstances GBS can 
fulfill this hope, however, they also advise caution, as raw 

Fig. 5   Ratio of genetic position: physical position by chromosome 
for the 200 SSR markers originally mapped on this population (right) 
and the final PANATI post-error correction dataset. A red line is 
marked at the expected genetic:physical position ratio at 0.004. Blue 

lines delineate the pericentromeric regions. In some cases the physi-
cal position of the SSR markers could not be determined. These SNPs 
were excluded from the analysis (color figure online)
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GBS data are sparse and prone to error, and the costs of the 
bioinformatics analysis necessary to address these two defi-
ciencies are not factored into the “$9.00/sample” sticker 
price.

We therefore developed here a streamlined bioinfor-
matics pipeline for adding markers to RIL populations to 
help lower the barrier posed by bioinformatics analysis to 
groups looking to use GBS to add markers to their map-
ping or breeding populations. In developing our pipeline, 
we experimented with three sequencing data alignment 
algorithm-SNP calling combinations: BWA-TASSEL, 
Bowtie2-TASSEL, and PANATI. In all three cases, con-
struction of a genetic map, a once-standard practice that is 
now falling to the wayside with the increased prevalence 
of physical maps, was calculated as a means of obtaining 
a visual indication of and quantifying the error within the 
GBS dataset. Prior to  imputation, all three datasets pro-
duced genetic maps that were 50–130 times the expected 
size of a rice genetic map. This extreme elongation of 
chromosomes occurred because the prevalence of error 
within the unimputed and unfiltered GBS datasets makes 
it “appear” as though many more double recombina-
tion events have occurred between markers than have, in  
reality, occurred (Lincoln and Lander 1992). In fact, 
these presumed double cross-overs result from incorrect 
SNP calls. In a smaller marker dataset, the effect of such 
an error rate might be relatively limited. However, as can 
be seen in Fig. 2, in a GBS dataset containing more than 
50,000 markers, the effect of the SNP call error rate is 
multiplied by many orders of magnitude.

Interestingly, such genetic map expansion has been seen 
before in the rice genetic maps built using AFLP (Ampli-
fied Restriction Fragment Length Polymorphism) markers 
in the 1990s. As in restriction enzyme based GBS, in AFLP 
analysis samples are digested with restriction enzymes 
and the restriction fragments are ligated to adapters and 
pooled. The key difference is that in AFLP, the fragments 
are then size separated using polyacrylamide gel electro-
phoresis (PAGE) as a means of identifying size variants 
while GBS uses next-gen sequencing to identify SNP vari-
ants (Vos et al. 1995). Two different groups working with 
an IR64  ×  Azucena double haploid population (devel-
oped using the same IR64  × Azucena parents as in this 
RIL population) noted that chromosomes were “stretched” 
with the integration of AFLP markers into RFLP genetic 
maps (Maheswaran et al. 1997; Virk et al. 1998). In 1996, 
Maheswaran et  al. (1997) specifically noted a correlation 
between genetic map size and the number of AFLP markers 
and hypothesized that these expansions had to be the result 
of map function error, possibly as a result of segregation 
distortion. Virk et  al. (1998) followed up on this hypoth-
esis in 1997 by trying to reduce the size of their genetic 
map by controlling for segregation distortion, without 

success. Not coincidentally, AFLPs in rice were quickly 
replaced with other more reliable marker systems, such as 
microsatellites/SSRs (McCouch et  al. 1997). Now, with 
the growing popularity of GBS, we have stumbled back 
into the old set of problems associated with AFLPs—error, 
sparcity, and stretching of the genetic map. Fortunately, it 
is now possible to address both the SNP calling error and 
data sparcity present in the GBS data through a reasonable 
degree of data imputation and filtering.

The GBS data sparseness can be attributed mainly to the 
high degree of multiplexing per lane during sequencing, 
though it is also affected by the distribution of restriction 
enzyme cut sites and the filtering out of sequence reads that 
align to multiple locations in the genome. This data sparse-
ness can be addressed by either lowering the degree of mul-
tiplexing (from 384-plex to 96-plex, or 96-plex to 48-plex), 
by running multiple lanes of a library (i.e., two lanes of 
a 384-plex library will generate twice the read number 
without having to make a new library) and/or by imputing 
missing data. As cost is a prime motivation for choosing 
to use GBS for genotyping in the first place, we focused 
on imputation as the solution to our data sparsity problem, 
and designed GBS-PLAID to impute missing data calls on 
RIL populations, specifically, using a Bayesian framework 
(see “Materials and methods” for details). After imputation, 
we removed all non-imputable and low-accuracy SNPs as 
a quality control measure. While this step reduced our total 
number of SNPs by a little more than 50 %, it also greatly 
reduced the size of all three genetic maps while boosting 
the median SNP call rates to 100 % (Table 1).

While the post-imputation reduction in genetic map size 
was dramatic, removing unimputable or low-quality imput-
able SNPs alone was not enough to bring the genetic map 
sizes down to a reasonable size. Post-imputation, pre-error 
correction maps were still approximately 5–8 times larger 
than the expected genetic map size. These data suggested 
that sequencing errors still remained, so a simple sequenc-
ing error correction algorithm was introduced to the pipe-
line to change calls that are likely errors to “missing data”. 
This error correction was then followed by removal of any 
SNPs with call rates lower than 75 %. Under lax imputa-
tion parameters the implementation of this error correction 
on the PANATI resulted in a genetic map containing no 
elongated chromosomes. Under more stringent imputation 
parameters, the Bowtie2 and BWA datasets also produced 
genetic maps with no elongated chromosomes. The final 
PANATI dataset contained 30,984 markers, and had a total 
genetic map size of 1862.96 cM, a size comparable to the 
1803 cM genetic map created from the 237 SSR markers 
and to the expected size for a rice genetic map (Harushima 
et al. 1998).

Similarly, Huang et  al. (2009) identified an average 
of 33.83 breakpoints per RIL using 1,493,461 markers 
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generated via whole-genome re-sequencing on a population 
of 150 rice RILs (Huang et al. 2009). The number for our 
final dataset was comparatively higher, at 36.02 breakpoints 
per RIL, until we removed the three RILs (individuals 153, 
206, and 293) with more than 8.0 % missing data from the 
population. This reduced the total number of breakpoints 
on the 168 RILs to 5,348, for an average of 31.83 break-
points per RIL—highlighting the ability of individual outli-
ers to distort population averages. It is reasonable to expect 
that we might detect slightly fewer breakpoints than Huang 
et al. as our dataset contains only 30,984 markers; however, 
the fact that our number is so close to theirs indicates that 
~31,000 markers provides essentially equivalent informa-
tion as ~1.5 million markers for a rice RIL population of 
this size.

Notably, BWA-TASSEL and Bowtie2-TASSEL both still 
had at least one stretched chromosome after the sequencing 
error correction—chromosome 3 in the case of BWA, and 
chromosomes 1 and 12 in the case of Bowtie2—when the 
more lenient GBS-PLAID parameters applied here were 
used (see “Materials and methods” for details). These dis-
torted chromosomes proved to be somewhat enigmatic. 
Removing the markers found in the stretched middle of 
these chromosomes did not decrease the genetic map size 
because the problem was not simply double recombination 
between one or two pairs of markers, but rather a series of 
errors that resulted in the calculated presence of two essen-
tially independent linkage groups on one chromosome. The 
application of more stringent GBS-PLAID parameters, 
however, solved the problem first for Bowtie2, and then, 
upon applying even more stringent GBS-PLAID param-
eters, for BWA, producing non-distended, BWA or Bow-
tie2 post-imputation, post-error correction maps (data not 
shown). The greater room for imputation leniency within 
the PANATI dataset, however, underscores the importance 
and utility of using a species-appropriate alignment algo-
rithm. PANATI was designed and programmed specifically 
to optimize alignments for species with levels of genetic 
diversity similar to those found in rice. The genetic map 
produced by the final PANATI dataset under the imputa-
tion parameters used in this study is evidence that it is bet-
ter suited for GBS data alignment in rice than either BWA 
or Bowtie2, both of which were designed for low-diversity 
species such as humans.

While appropriately rigorous methods for addressing 
GBS data errors and sparsity were necessary to produce our 
final dataset, the results of our QTL analyses and our analy-
sis of the genetic architecture of the RIL population using 
our final dataset strongly suggest that via our streamlined 
pipeline we were able to produce a high-quality dataset 
that adds great value to the IR64 × Azucena RIL mapping 
population. By saturating the population with 30,984 SNPs, 
we were able to define regions of segregation distortion 

down to 0.24  Mb—the recombinational limits in an RIL 
population of this kind, thus identifying regions of candi-
date sterility genes. The majority of these regions, includ-
ing those on chromosomes 1, 3, 4, 6, 8, and 11, correspond 
to previously identified putative sterility loci, lending fur-
ther validation to the value of our dataset for both mapping 
segregation distortion and identifying putative sterility loci 
(Harushima et  al. 2001; Harushima et  al. 2002; Wu et  al. 
2010; Xu et al. 1997; Garavito et al. 2010; Matsubara et al. 
2011). The saturation of the population with markers also 
allowed us to map recombination hot and cold spots across 
the genome with a similar high degree of precision.

Furthermore, when the full 30,984 SNPs were used to 
re-map QTL for aluminum tolerance using previously 
published phenotype data (Famoso et  al. 2011), two new 
QTL were discovered in a region of high recombina-
tion that went undetected when either the 200 SSRs were 
used by Famoso et al. or when the 1,464 SNP subset was 
used. Likewise, when the full set of 30,984 SNPs was used 
to map QTL for leaf width, four more QTL were identi-
fied than when the 1,464 subset was used. These results 
strongly indicate that fully saturating a mapping popula-
tion with SNP markers can enhance the ability to detect 
QTL, particularly in regions of heightened recombination, 
and subsequently lower linkage disequilibrium, that, spe-
cifically, the large number of markers now available on the 
IR64 × Azucena RIL population should serve as a valuable 
genetic resource for the rice community.

Overall, our results suggest that GBS can help fill the 
genotyping gap between reference lines of broad general 
interest and non-reference lines of more specific interest 
by providing an inexpensive means of adding SNP mark-
ers to mapping and breeding populations. RIL populations 
such as the one explored here are particularly well suited to 
this new technology as line immortality means that geno-
typing is a one-time investment and results can be utilized 
for many years and by many research groups, to evaluate 
many traits or genetic characteristics. Just as importantly, 
the high degree of homozygosity in an RIL population 
simplifies the bioinformatic analysis and error correction, 
as it eliminates the difficulty of distinguishing heterozy-
gotes from sequencing errors. While outside the scope of 
this paper, bioinformatics tools such as those contained in 
TASSEL also exist for the treatment of other types of bi-
parental mapping populations, although we advise caution 
and careful quantification of error when using highly multi-
plexed GBS (i.e., 384-plex or greater) for larger, more com-
plex genomes, or for populations where a significant degree 
of heterozygosity is expected, particularly if allele frequen-
cies for some heterozygous classes are low. As demon-
strated here, calculating a genetic map, when possible, is 
a good way to assess error contained within GBS datasets. 
Finally, we conclude by noting that the data sparsity and 
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error inherent in raw GBS data requires a significant invest-
ment in bioinformatics that is often not factored into the 
low up-front cost of generating GBS data. New computa-
tional pipelines, such as the one described here, are being 
developed to address these problems.
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